LeetCode-698. Partition to K Equal Sum Subsets

LeetCode-698. Partition to K Equal Sum Subsets

Posted by Jae on July 22, 2019

1、题目

Given an array of integers nums and a positive integer k, find whether it’s possible to divide this array into k non-empty subsets whose sums are all equal.

Example 1:

Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.

Note:

1 <= k <= len(nums) <= 16.
0 < nums[i] < 10000.

2、思路

这道题给我们一个数组和一个k,将数组中的元素分成k组,每组至少一个元素且各组元素的和相等,所以我们可以先计算数组中所有元素的和,如果能被k整除说明可能满足划分。

1) 首先计算数组中所有元素和sum,如果sum不能被k整除,则结果为false,否则计算划分后每组的和 subSum = sum/k;

2) 对数组进行非降序排序,从后往前遍历,如果最大的元素比subSum大,说明存在元素没法划分,结果为false,否则将所有等于sunSum的元素挑出来单独为一组,分成i组,此时剩下j个元素;

3) 将剩下的j个元素(0,1,2..j-1)分成k-i组,可以使用回溯法不断的去尝试,对于元素j-1,如果可以放入第一组且剩下j-1个元素可以放入k-i组中,则存在这样的划分,否则,将元素j-1从第一组拿出来尝试放入第二组,知道所有的元素尝试完;

4) 如果元素尝试完都没有找到可能的划分,则不存在这样的划分.

3、实现

public boolean canPartitionKSubsets(int[] nums, int k) {
   int sum = sum(nums);
   if (sum % k != 0){
       return false;
   }

   int subSum = sum / k;

   Arrays.sort(nums);
   int i = nums.length - 1;
   if (nums[i] > subSum){
       return false;
   }
   while (i >= 0 && nums[i] == subSum){
       i--;
       k--;
   }

   return patition(new int[k], nums, i, subSum);
}

public int sum(int[] nums){
   int res = 0;
   for (int num : nums){
       res += num;
   }
   return res;
}

public boolean patition(int[] subSets, int[] nums, int start, int target){
   if (start < 0){
       return true;
   }

   for (int i = 0; i < subSets.length; i++){
      if (subSets[i] + nums[start] <= target){
          subSets[i] += nums[start];
          if (patition(subSets, nums, start-1, target)){
              return true;
          }
          subSets[i] -= nums[start];
      }
   }
   return false;
}

< script src = " / js / bootstrap.min.js " >