LeetCode-142. Linked List Cycle II

LeetCode-142. Linked List Cycle II

Posted by Jae on September 11, 2019

1、题目

Given a linked list, return the node where the cycle begins. If there is no cycle, return null.

To represent a cycle in the given linked list, we use an integer pos which represents the position (0-indexed) in the linked list where tail connects to. If pos is -1, then there is no cycle in the linked list.

Note: Do not modify the linked list.

Example 1:

Input: head = [3,2,0,-4], pos = 1
Output: tail connects to node index 1
Explanation: There is a cycle in the linked list, where tail connects to the second node.

Example 2:

Input: head = [1,2], pos = 0
Output: tail connects to node index 0
Explanation: There is a cycle in the linked list, where tail connects to the first node.

Example 3:

Input: head = [1], pos = -1
Output: no cycle
Explanation: There is no cycle in the linked list.

Follow-up: Can you solve it without using extra space?

2、思路

该题让我们判断链表是否有环且找到环的入口节点位置,对于判断链表是否有环可以使用快慢指针,快指针每次走两步,慢指针每次走一步,如果有环存在,快慢指针一定会在环的某个节点上相遇,但是如果链表中有环,那么环的入口位置怎么找呢?

我们通过下面的图来分析:

example

假设链表头距离环入口点距离为a, 快慢指针相遇点距离环入口点距离为b,环的周长为r,则慢指针走过的路程为(a+b),因为快指针速度是其两倍,所以快指针走过的路程为2(a+b),还可以得知,当快慢指针相遇时,慢指针还没有绕环一圈,而快指针已经绕环n圈了。

于是有下面关系:

2(a + b) = a + b + nr

化简得

a = nr-b=(n-1)r + (r-b)

其中(r-b)就是从相遇点继续前进到环入口点的距离,所以我们可以让一个指针从链表头开始每步前进一个节点,另一个指针从相遇点每步前进一个节点,一定能在环入口点相遇。

3 实现

class ListNode {
    int val;
    ListNode next;
    ListNode(int x) {
        val = x;
        next = null;
    }
 }

 public class Solution {
    public ListNode detectCycle(ListNode head) {
        ListNode fast = head;
        ListNode slow = head;

        while (fast != null && fast.next != null){
            fast = fast.next.next;
            slow = slow.next;
            if (fast == slow){
                break;
            }
        }
        if (fast == null || fast.next == null) return null;

        slow = head;
        while (fast != slow){
            fast = fast.next;
            slow = slow.next;
        }

        return fast;
    }
}